Determinacy Theory of Movement
Nobu Goto (Toyo University) & Toru Ishii (Meiji University)

1. Introduction: Chomsky et al. (2019) clarify the concept workspace WS and reformulate Merge as MERGE, an operation on WS (not on a particular syntactic object, SO), where WS is taken to be a stage of the derivation: MERGE maps WS–[X, Y] to WS’–[[X, Y]]. They claim that MERGE should apply in a deterministic fashion based on the principle of Determinacy (cf. Restricting Resources in Chomsky’s MIT lectures, April 12th, 2019), but its exact formulations, explanations, and consequences are left untouched. This paper proposes that Determinacy be formulated as a condition on the input of MERGE, arguing that our notion of Determinacy coupled with the Phase Impenetrability Condition (PIC), an independently motivated condition on Transfer, gives us a unified account of various movement restrictions on different languages.

2. Proposal: We propose that Determinacy apply at the input of MERGE; if there is an ambiguous application of MERGE at the present stage of a derivation, a Determinacy violation occurs:

(1) Our Notion of Determinacy (proposal): Determinacy applies at the input of MERGE.

Let us look at how our Determinacy (1) captures movement. Suppose that MERGE takes WS1 (2a) as its input and then maps it to WS2 (2b), which is the case of Internal Merge (IM) of c:

(2) a. WS1 = [{a, {b, c}}, d] b. WS2 = [{c, {a, {b, c}}}, d] c. WS3 = [{c, {a, {b, c}}}, d]

At the input of this MERGE (2a), there is only one accessible copy of c; hence there is no Determinacy violation. Suppose that we apply further MERGE to WS2 (2b), mapping to WS3 (2c), i.e., we apply IM to c again (successive-cyclic movement of c). Given the notion of recursion that any SO once generated in WS remains accessible to further operations (Chomsky et al. 2019), we have two accessible copies of c at the input of MERGE (2b), rendering two options available; to move either the higher copy of c or the lower copy of c. This ambiguous situation for MERGE would violate Determinacy, and incorrectly predict that no successive-cyclic movement is allowed.

Then we argue that such an ambiguous rule application problem is resolved by the PIC as in (3):

(3) What did you say that John bought?

a. [CP what [C-that [TP John [T [vP John [v-R(BUY) [RP what [R(BUY) what]]]]]]]]

b. [CP what [C-did [TP you [T [vP you [v-R(SAY) [RP what [R(SAY) [CP what [C-that [TP ...]]]]]]]]]]

In (3a), what moves from its base position to the Spec of Root (R) (Spec-R) that inherits phasehood from v, and R-complement undergoes Transfer (Chomsky 2013; 2015) (grey = transferred SO), rendering what in the base position inaccessible to further operations by the PIC. There is only one accessible copy of what in Spec-R; there is no Determinacy violation. Similarly, the PIC avoids Determinacy violations in (3b).

3. Consequences: First, our Determinacy (1) explains the Subject Condition effect (4a) and its cancellation (4b) as in (5a,b). In (5a), to move who to Spec-C, there are two accessible copies of who in Spec-T and Spec-v, thereby violating Determinacy. But in (4b), Spec-T is occupied by there. There is only one accessible copy of who in Spec-v; no Determinacy violation occurs:

(4) a. *Who did [pictures of t] please you? b. Who is there [a picture of t] on the wall?

(5) a. [CP who [C-did [TP ...who [T [vP ...who [v... b. [CP who [C-is [TP there [T [vP ...who [v... Determinacy also explains the absence of the Subject Condition effects in Japanese (6a) as in (6b):

(6) a. ?Dare-ni [John-ga [[Mary-ga t atta koto]-ga mondai-da to] omoteru] no who-Dat John-Nom Mary-Nom met fact-Nom problem-is that think Q Lit. ‘Who, John thinks that the fact that Mary met t is a problem.’ (Saito and Fukui 1998)

b. [CP dare-ni [C [TP [vP [Mary-ga dare-ni atta koto]-ga [v... In (6b), to move dare-ni to Spec-C, there is only one accessible copy of dare-ni in Spec-v; there is no Determinacy violation (Fukui 1986, a.o. for evidence that subjects in Japanese stay in situ).

Second, our Determinacy (1) explains the ban against vacuous Topicalization (7a) as in (7b):

(7) a. *John, t came yesterday. b. [TP John [TP John [T [vP John [v... In (7b), to move John to the higher Spec-T for topic interpretation, there are two accessible copies
of John in the lower Spec-T and Spec-\(\nu\), thereby violating Determinacy.

Third, our Determinacy (1) explains the that-\(t\) effect (8a,b) and its cancellation (8c,d) as in (9):

(8) a. *Who do you think that \(t\) saw Bill? b. Who do you think \(t\) saw Bill?

c. What do you think that there is \(t\) in the box? d. Who did he say that tomorrow \(t\) would go?

(9) a. [CP who [that [TP who [T [\(\nu\) who [v... b. [RP who [R [CP C(\text{that})] \to \text{O} [TP who [T [\(\nu\) who [v... c. [CP what [that [\(\nu\) there [T [\(\nu\) what [v... d. [CP who [tomorrow [C [TP [T [\(\nu\) who [v...

In (9a), to move who to Spec-\(C\), there are two accessible copies of who in Spec-T and Spec-\(\nu\), thereby violating Determinacy. In (9b), C(\text{that}) is deleted and \(\nu\) undergoes Transfer via inheritance of phasehood from C to T (Chomsky 2015). To move who from Spec-T to the matrix Spec-\(R\) (see (2b)), there is only one accessible copy of who in Spec-\(\nu\); no Determinacy violation occurs. In (9c), since Spec-\(C\) is occupied by there, to move what to Spec-\(C\), there is only one accessible copy of what in Spec-\(\nu\); no Determinacy violation occurs. In (9d), that occupies the higher C and tomorrow the lower Spec-C under a layered CP approach to the adverb effects (Douglas 2017). Under a C-to-C inheritance approach to the layered CP (Goto 2011), phi-valuation of who takes place at the lower Spec-\(C\). To move who to the lower Spec-\(C\), there is only one accessible copy of who in Spec-\(\nu\); no Determinacy violation occurs. The absence of the that-\(t\) effect in Spanish (10a) and Japanese (10b) also follows from our Determinacy (1). If pro appears in Spec-\(T\) in \textit{pro}-drop languages like Italian and Spanish (Rizzi 1982) (see (12b)), and Japanese subjects stay in Spec-\(\nu\) (see (6b)), there is only one accessible copy of \textit{quién}/OP in Spec-\(\nu\); no Determinacy violation occurs:

(10) a. Quién dijo? \[\text{que } t\text{ salió temprano}\]? ‘Who did you say that \(t\) left early?’ (Spanish)

b. [OP \[A-ga \{B-ni hanasikaketa to\} ometteiru\} yorimo ookuno hito-ga C-ni hanasitagatta A-Nom B-Dat talked to that \text{think} \text{than} more people-Nom C-Dat wanted to talk

‘More people wanted to talk with C than A thinks that talked to B.’ (Japanese)

Fourth, our Determinacy (1) explains the cross-linguistic contrast of further-raising as in (12a,b):

(11) a. *Juan and Peter seem that are very smart. (English)

b. Juan y Pedro parecen que son muy listos. (Spanish)\((11b)\) is the counterpart of (11a)

(12) a. [CP John and Peter [C(\text{that})] [TP John and Peter [T [\(\nu\) John and Peter [v ... b. [CP Juan y Pedro [C(\text{que})] [TP pro [T [\(\nu\) Juan y Pedro [v ... In (12a), to move John and Peter to Spec-\(C\), there are two accessible copies of \textit{John and Peter} in Spec-T and Spec-\(\nu\), thereby violating Determinacy. In (12b), Spec-\(T\) is occupied by pro, since Spanish is a \textit{pro}-drop language (see (10a) above). To move Juan y Pedro ‘John and Peter’ to Spec-\(C\), there is only one accessible copy of \textit{Juan y Pedro} in Spec-\(\nu\); no Determinacy violation occurs.

Fifth, Determinacy (1) explains the principle of Economy of Derivation, which bans superfluous steps of a derivation. Suppose that in the matrix clause of (3), what stops over the higher Spec of \(T\) before moving to Spec-\(C\) as in (13). Here, there are two accessible copies of what in Spec-T and Spec-\(R\), thereby violating Determinacy. But if what moves from Spec-\(R\) to Spec-\(C\) phase-by-phase as in (3b), there is only one accessible copy of what in Spec-\(R\); there is no Determinacy violation:

(13) *[CP what [C-did [TP what [TP you [T [\(\nu\) you [v-R(SAY)]] [RP what [R(SAY)]] ...\]

Our analysis of successive-cyclic IM is compatible with the two existing approaches to A-movement: (i) \(v\)P is not a phase (Chomsky 2000; 2007; 2008) and A-movement does not leave copies in intermediate positions (Lasnik 1999; Epstein and Seely 2006); (ii) \(v\)P is a phase and A-movement leaves copies in the intermediate positions (Legate 2003). In the former, one-fell-swoop movements avoid Determinacy violations, and in the latter, the PIC avoids Determinacy violations.

4. Conclusion: Determinacy as an input condition on MERGE coupled with the PIC presents us with a \textit{unified} explanation of various movement phenomena. We will show that it makes many further correct predictions regarding not only other movement phenomena, but also deletion phenomena, and does have far-reaching consequences for the very recent theory of MERGE.